Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Kilonova Emissions from Neutron Star Merger Remnants: Implications for the Nuclear Equation of StateAbstract Multimessenger observations of binary neutron star mergers can provide valuable information on the nuclear equation of state (EOS). Here, we investigate the extent to which electromagnetic observations of the associated kilonovae allow us to place constraints on the EOS. For this, we use state-of-the-art three-dimensional general-relativistic magnetohydrodynamics simulations and detailed nucleosynthesis modeling to connect properties of observed light curves to properties of the accretion disk, and hence, the EOS. Using our general approach, we use multimessenger observations of GW170817/AT2017gfo to study the impact of various sources of uncertainty on inferences of the EOS. We constrain the radius of a 1.4M⊙neutron star to lie within 10.30 ≤R1.4≤ 13.0 km and the maximum mass to beMTOV≤ 3.06M⊙.more » « lessFree, publicly-accessible full text available June 26, 2026
-
Abstract The remnant black hole–accretion disk system resulting from binary neutron star mergers has proven to be a promising site for synthesizing the heaviest elements via rapid neutron capture (r-process). A critical factor in determining the fullr-process pattern in these environments is the neutron richness of the ejecta, which is strongly influenced by neutrino interactions. One key ingredient shaping these interactions is fast neutrino flavor conversions (FFCs), which arise due to angular crossings in neutrino distributions and occur on nanosecond timescales. We present the first three-dimensional in situ angle-dependent modeling of FFCs in postmerger disks, implemented within general relativistic magnetohydrodynamics with Monte Carlo neutrino transport. Our results reveal that, by suppressing electron neutrinos, FFCs more efficiently cool the disk and weaken the early thermally driven wind. Less releptonization due to electron neutrino absorption makes this cooler wind more neutron rich, producing a more robustr-process at higher latitudes of the outflow. This study underscores the necessity of incorporating FFCs in realistic simulations.more » « lessFree, publicly-accessible full text available May 14, 2026
-
Abstract Magnetohydrodynamic turbulence drives the central engine of post-merger remnants, potentially powering both a nucleosynthetically active disk wind and the relativistic jet behind a short gamma-ray burst. We explore the impact of the magnetic field on this engine by simulating three post-merger black hole accretion disks using general relativistic magnetohydrodynamics with Monte Carlo neutrino transport, in each case varying the initial magnetic field strength. We find increasing ejecta masses associated with increasing magnetic field strength. We find that a fairly robust mainr-process pattern is produced in all three cases, scaled by the ejected mass. Changing the initial magnetic field strength has a considerable effect on the geometry of the outflow and hints at complex central engine dynamics influencing lanthanide outflows. We find that actinide production is especially sensitive to magnetic field strength, with the overall actinide mass fraction calculated at 1 Gyr post-merger increasing by more than a factor of 6 with a tenfold increase in magnetic field strength. This hints at a possible connection to the variability in actinide enhancements exhibited by metal-poor,r-process-enhanced stars.more » « less
-
Abstract We simulate a black hole accretion disk system with full-transport general relativistic neutrino radiation magnetohydrodynamics for 1.2 s. This system is likely to form after the merger of two compact objects and is thought to be a robust site ofr-process nucleosynthesis. We consider the case of a black hole accretion disk arising from the merger of two neutron stars. Our simulation time coincides with the nucleosynthesis timescale of ther-process (∼1 s). Because these simulations are time-consuming, it is common practice to run for a “short” duration of approximately 0.1–0.3 s. We analyze the nucleosynthetic outflow from this system and compare the results of stopping at 0.12 and 1.2 s. We find that the addition of mass ejected in the longer simulation as well as more favorable thermodynamic conditions from emergent viscous ejecta greatly impacts the nucleosynthetic outcome. We quantify the error in nucleosynthetic outcomes between short and long cuts.more » « less
-
Abstract As LIGO-Virgo-KAGRA enters its fourth observing run, a new opportunity to search for electromagnetic counterparts of compact object mergers will also begin. The light curves and spectra from the first “kilonova” associated with a binary neutron star merger (NSM) suggests that these sites are hosts of the rapid neutron capture (“r”) process. However, it is unknown just how robust elemental production can be in mergers. Identifying signposts of the production of particular nuclei is critical for fully understanding merger-driven heavy-element synthesis. In this study, we investigate the properties of very neutron-rich nuclei for which superheavy elements (Z≥ 104) can be produced in NSMs and whether they can similarly imprint a unique signature on kilonova light-curve evolution. A superheavy-element signature in kilonovae represents a route to establishing a lower limit on heavy-element production in NSMs as well as possibly being the first evidence of superheavy-element synthesis in nature. Favorable NSM conditions yield a mass fraction of superheavy elementsXZ≥104≈ 3 × 10−2at 7.5 hr post-merger. With this mass fraction of superheavy elements, we find that the component of kilonova light curves possibly containing superheavy elements may appear similar to those arising from lanthanide-poor ejecta. Therefore, photometric characterizations of superheavy-element rich kilonova may possibly misidentify them as lanthanide-poor events.more » « less
-
Abstract The rapid neutron capture process (r-process) is one of the main mechanisms whereby elements heavier than iron are synthesized, and is entirely responsible for the natural production of the actinides. Kilonova emissions are modeled as being largely powered by the radioactive decay of species synthesized via ther-process. Given that ther-process occurs far from nuclear stability, unmeasured beta-decay rates play an essential role in setting the timescale for ther-process. In an effort to better understand the sensitivity of kilonova modeling to different theoretical global beta-decay descriptions, we incorporate these into nucleosynthesis calculations. We compare the results of these calculations and highlight differences in kilonova nuclear energy generation and light-curve predictions, as well as final abundances and their implications for nuclear cosmochronometry. We investigate scenarios where differences in beta-decay rates are responsible for increased nuclear heating on timescales of days that propagates into a significantly increased average bolometric luminosity between 1 and 10 days post-merger. We identify key nuclei, both measured and unmeasured, whose decay rates directly impact nuclear heating generation on timescales responsible for light-curve evolution. We also find that uncertainties in beta-decay rates significantly impact age estimates from cosmochronometry.more » « less
An official website of the United States government
